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Abstract—The screens of our smartphones and laptops dis-
play our private information persistently. The term “shoulder
surfing” refers to the behavior of unauthorized people peeking
at our screens, easily causing severe privacy leakages. Many
countermeasures have been used to prevent naked eye-based
peeking by reducing the possible peeking distance. However,
the risk from modern smartphones with powerful cameras is
underestimated. In this paper, we propose SRPeek, a long-
distance shoulder surfing attack method using smartphones.
Our key observation is that although a single image captured
by smartphone cameras is blurred, the attacker can leverage
super-resolution (SR) techniques to recover the information from
multiple blurry images. We design an end-to-end system deployed
on commercial smartphones, including an innovative deep neural
network (DNN) architecture, StARe, for efficient multi-image
SR. We implement SRPeek in Android and conduct extensive
experiments to evaluate its performance. The results demonstrate
we can recognize 90% of characters at a distance of 6m with
telephoto lenses and 1.8m with common lenses, calling for the
vigilance of the quietly growing shoulder surfing threat.

Index Terms—shoulder surfing, deep learning, super resolution

I. INTRODUCTION

Digital screens play an unprecedented role in our daily
life, and screen privacy has been well-researched [1]–[4] for
a long time. Unauthorized people peeking at your screen
over your shoulder, known as “shoulder surfing”, takes place
frequently in public places. A malicious attacker can directly
gain access to considerable amounts of private information,
including passwords, chat messages, and texts. For example,
this puts at risk the widely-used verification code messages,
leading to catastrophic results.

When attackers only use their own naked eyes, multiple
works aim to evaluate the risks in real life [5] [6] and measure
human adversaries [2], [7]. And shoulder surfing susceptibility
[8] [4]. Some methods are proposed to defend against this
threat by shortening the readable distance of the screen [9],
increasing user vigilance, [10] [11] [12] [3] or hiding critical
information [1] [13]. Unfortunately, the full potential of shoul-
der surfing is drastically underestimated when the attacker
is equipped with a modern smartphone, which can capture
snapshots of a faraway screen and is probably capable of
deciphering critical information from these images.

We present SRPeek, a new shoulder-surfing attack sys-
tem deployed on a COTS smartphone, taking photos and
running a super-resolution (SR) neural network as shown in
Figure 1. When taking multiple snapshots of the same scene,
the images will slightly differ from each other, providing
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Fig. 1: An illustrative attack scenario.

additional information, which can be used by multi-frame SR
algorithms to produce high-res images [14]. We use burst
mode of smartphone cameras to obtain more snapshots, but
fusing the information is challenging and time-consuming. Our
solution is StARe, a novel and lightweight Super-resolution
Architecture for a larger number of Repeated images. This
model contains three novel designs: parameter sharing, feature
zero, and feature-wise merge, to improve performance and
reduce computation. Although as a byproduct of an attack
model, the value of StARe is not limited to a malicious attack:
it can be utilized in a great variety of scenarios ranging from
surveillance to self-driven cars, or even mobile Augmented
Reality(AR) applications which require distortion resistance
[15]. StARe enables a camera to provide high-quality imaging
of stationary objects by staring at it for a slightly longer time.

A possible attack scenario is shown in Fig. 1. During the
attack, we hypothesize that the attacker (on the left) gains LOS
of the victim’s screen (on the right) within the 6m range.
And any information of interest appears on the screen for
half a second. Given the burst mode, the attacker can take
ten snapshots in this time and process these images afterward
with multi-frame SR algorithms to generate a high-resolution
result, obtaining the information within 2 seconds. This whole
process can even be looped to achieve real-time surveillance,
while few would notice or suspect someone 6 meters away.

Summary: Our contribution in this work is as follows:

• A new threat model: We reveal the threat posed by
present-day smartphones and SR technology. The exper-
imental multi-frame SR network we designed can recon-
struct text from highly blurred snapshots. We evaluate its
impact on screen privacy, but it can also be applied to a
wide range of long-range visual perception applications.

• A new attack system: We present SRPeek, an end-



to-end threat model of long-range shoulder-surfing, de-
ployed on commercial smartphones. To the best of our
knowledge, we are the first to consider the presence
of smartphone cameras and SR algorithms in shoulder
surfing scenarios.

• A new threat analysis: We evaluate this new shoulder-
surfing threat model in multiple scenarios. SRPeek
outperforms the state-of-the-art for content recognition,
calling for new privacy concerns.

• A new defense exploration: We discuss the effectiveness
and study a set of passive and active countermeasures to
prevent the leakage of information against this unprece-
dented information threat.

The rest of the paper is organized as follows. After some
background information presented in Section II, we introduce
the design principles in Section III and the specific system
design in Section IV, followed by the implementation in
Section V and evaluation in Finally, section VI and VII. We
further wrap up this paper by delivering the limitations and
countermeasures of our system in Section VIII. Section IX
describes the related work, especially the state-of-the-art for
shoulder surfing and SR techniques. And the conclusion is
shown in Section X.

II. BACKGROUND

Telephoto lens: The present-day smartphones are mostly
equipped with multiple cameras. Among them, the telephoto
camera, also known as the periscope camera, empowers these
smartphones up to 50� or 100� zooming. These cameras
have a much longer focal length, giving them 5� to 10�
magnification, enhancing the smartphone’s ability to image
faraway objects. We utilize this camera in SRPeek.

Burst mode: Improvements in-memory read & write speed
has kept increasing the frame rate of burst mode and video
photographing. By holding down the snapshot button, users
can take 10 to 20 snapshots per second with recent smart-
phones, providing more graphical information for super reso-
lution. Compared to video recording, burst mode has a lower
frame rate but can generate images with higher resolution,
which is beneficial for super resolution tasks. SRPeek uses
burst mode to capture multiple images as the inputs for multi-
frame SR algorithms.

Computational abilities The new generation of smart-
phones is equipped with unprecedented computational abil-
ities. Most high-end phones have 8-core CPUs and pro-
grammable GPUs installed, making it possible to run
lightweight deep neural network (DNN) models locally. How-
ever, computational abilities are still extremely limited for the
traditional SR DNN model. How to run an SR system in real-
time is the main challenge in designing SRPeek.

III. DESIGN PRINCIPLES

A. Challenges

The core of SRPeek system is StARe, a lightweight multi-
frame SR architecture, which aims to extract more information

(a) reconstructed image (b) ground truth

Fig. 2: An example of Concept Drifting.

from a large number of input frames while reducing compu-
tational complexity. The designs of StARe are based on the
nature and unique challenges of our application:
• Computational Complexity: Traditional SR DNN mod-

els are computationally expensive, and the increased
number of input images exacerbates the problem. To
achieve the real-time SR, only 0.05 seconds is available
for the model to process each snapshot. On the contrary,
existing SR models often contain more parameters and
operations than image classification models, as they have
a much larger output vector.

• Concept Drifting: The blurriness functions may vary
drastically in different distances, illumination, and with
different lenses of smartphones, leading to concept drift.
Furthermore, the reconstructed images might be percep-
tually satisfactory but incorrect. For example, in Fig.2,
the upper part is wrongly reconstructed, and the network
probably mistakes it as part of a left-falling stroke.

• Information fusion: Increasing input images can lead to
enhanced reconstruction quality, but this requires sophis-
ticated algorithms to fuse information between the noisy
and perceptually heterogeneous images, which is of-
ten computationally expensive. High efficient algorithms
are required for this fusion process, avoiding redundant
computation while extracting and preserving essential
features. This is rarely addressed in previous works, and
StARe aims to fill this gap.

B. Primary Design Features

Different from traditional multi-frame SR networks, to
address the challenges of this unique application, three core
improvements are made by our StARe:
• Parameter Sharing and Channel Isolation: We use

convolutional layers to process images, but each image
is processed individually with the same set of param-
eters, reducing parameter count and training complex-
ity. Information is still shared between the images at
each layer. However, unlike 3D convolutions, which are
computationally intensive, this cross-channel dataflow is
performed by simple, statistical calculations, reducing the
computational cost.
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Fig. 3: Workflow of the SRPeek system.

• Feature Zero: To encourage the network to generate
images closer to ground truth, we extract a set of simple
features with CNN from each original image, called
Feature Zero. The features are then merged into feature
maps of this image repeatedly at each layer. As an added
benefit, the model has varying depths, thus extracting
differentials between inputs and reconstructing high-res
images at multiple scales, which is critical in the existing
SR technique [16].

• Feature-wise Merge: With Channel Isolation convolu-
tions, a set of feature maps are extracted from each image
individually, and the parameter sharing feature ensures
that these feature maps are comparable. Consequently,
we can merge the corresponding feature maps from
each image by simply calculating the max, min, and
mean values, resolving the consensus of the information
collected from each image. This result is then distributed
along with Feature Zero to each image, and in this
way, we enable efficient horizontal data flow without any
additional parameters.

IV. SYSTEM DESIGN

We propose a portable, unobtrusive, robust system to facili-
tate screen activity type recognition and sensitive information
reconstruction. In this section, we introduce the input of the
network and the preprocessing procedures it requires, the
design of the network architecture, and its detailed structure.
The workflow of SRPEEK is shown in Fig. 3.

A. Image input and preprocessing

1) Burst mode and Alignment: The attacker points his
camera at the victim’s screen and obtains multiple images
of the same scene with burst mode. These images are then
aligned to remove slight shifts due to hand tremors. In our
application, we use the border of screens for more accurate
alignment, shown in Fig. 4. Specifically, we use Hough
transform [17] to detect the edges roughly (Fig. 4(b)). Then we
select the border edges and refine them at the pixel level, using
the contrast between the luminescent screen and its dimmer
background(red rectangle in Fig. 4(c)). Finally, we crop out the
screen for each image and turn it into a fixed-size rectangle
by using affine transformation(Fig. 4(d)). After these images
are perfectly aligned, they will then undergo the preprocessing
phase.

(a) the original image (b) the detected edges

(c) border detection (d) cropped image

Fig. 4: The alignment process.

2) Preprocessing: Images are preprocessed to remove
environment-specific features before being sent to the neural
networks so that features learned from images in one envi-
ronment can be used in all other environments. To reduce
workload, we crop out the non-text areas from the images,
which can be detected with the density of edges from the
Hough transform result in the alignment process(Fig. 4(b)).
Due to the scarceness of texts and large line spacing in chat
apps, in most cases, we can filter out more than 70% of the
image, reducing the workload of future procedures. Then, the
images are normalized to a value range of 0 to 1 and a standard
deviation of 1, before being processed by the neural network
StARe.

B. Network Design

The core of the SRPeek system is a specially designed
multi-frame SR neural network, accepting a group of N

images indexed x
(0)
1 to x

(0)
N as input and generating an image

with higher resolution y as output. The detailed structure is
shown in Fig. 5. The network comprises L layers, each of
which implements a non-linear transformation Hl(�), where
l indexes the layer. As mentioned before, in each layer,
images are processed separately, with the merging layers as
revenue for communication so that the output of each layer
is correspondent to the input. We denote the output of the lth

layer as x
(l)
1 to x

(l)
N , which is also the input of the (l + 1)th

layer. Till now, the model is not different from traditional SR
models:

x
(l)
i = Hl(x

(l−1)
i ); i = 1; 2; :::N: (1)

Additionally, we introduce the initial images x
(0)
i as an input

for all the layers:

x
(l)
i = Hl(x

(l−1)
i ; x

(0)
i ); i = 1; 2; :::N: (2)
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Fig. 5: Core network architecture of SRPeek.

The last layer is exceptional, it yields a single image y as
output.

In these layers, nothing is done to raise the resolution of the
images, so that the resolution of x

(0)
i to x

(l−1)
i and y remains

the same. To increase resolution, we insert several 2� near-
est upsampling layers U evenly throughout the architecture
between the layers:

x
(l)
i  U(x

(l)
i ); x

(0)
i  U(x

(0)
i ); i = 1; 2; :::N: (3)

we upsample the input images x
(0)
i simultaneously to keep

the two inputs of the following layers Hl(x
(l−1)
i ; x

(0)
i ) unani-

mous in resolution.Inside each layer Hl there are 3 convolution
layers Conv1l(�), Conv2l(�), Conv3l(�) and 1 merging layer
Mergel(�).
Conv1: The first convolutional layer, Conv1, accepts the
layer’s first input parameter x

(l−1)
i as input. Note that all three

convolutional layers accept a single image (or its feature maps
from the last convolutional layer) as input, the convolutional
process is repeated for all the images, and calculations within
the same convolutional layer share the same group of parame-
ters all the time. The parameters are denoted as P aramsl for
convolutional layer Convsl; s = 1; 2; 3.

a
(l)
i = Conv1l(x

(l−1)
i ; P aram1l); i = 1; 2; :::N: (4)

Merge: The results of the previous step of all the images
fa(l)

1 ; a
(l)
2 ; :::; a

(l)
n g are then passed to the merging layer

Mergel to generate t groups of feature maps. Suppose the
results of Conv1l consists of R channels:

a
(l)
i = fa(l)

i1 ; a
(l)
i2 ; :::; a

(l)
iRg; i = 1; 2; :::N: (5)

The data in each channel will be merged separately in the
merging layer. The output is T � R channels, denoted as
b

(l)
tr (t = 1; 2; :::T; r = 1; 2; :::R):

b
(l)
tr(p;q) =

N∑
i=1

a
(l)
ir(p;q)e

kta
(l)

ir(p,q)=
∑

e
kta

(l)

ir(p,q) ; (6)

where (p,q) represents the pixel at this coordinate, and kt is
a set of fixed parameters shared in all the merging layers
throughout the model, controlling the behavior of the merging
process. Apparently, k=0 leads to averaging, k=+1 leads
to the max operator, and k=�1 leads to min operator. We

use T=5 and k=-1,-0.5,0,0.5,1 in our model, giving consid-
eration to both consensuses (k=0,averaging) and prominent
features(k=1, ’soft’max and k=-1, ’soft’min). these T � R
channels b

(l)
tr is the output of this merging layer Mergel.

Conv2: Conv2 is a replica of Conv1, processing the layer’s
second input parameter x

(0)
i , also generating N outputs with

R channels per output, denoted as cir
(l); i = 1; 2; :::N; r =

1; 2; :::R:

c
(l)
i = Conv2l(x

(0)
i ; P aram2l); i = 1; 2; :::N;

c
(l)
i = fc(l)

i1 ; c
(l)
i2 ; :::; c

(l)
iRg; i = 1; 2; :::N:

(7)

Conv3: The data from Merge and Conv2 are merged to-
gether, in that all the T �R channels of b

(l)
tr are replicated N

times and stacked with each one of the N outputs of Conv2l,
before these N outputs, each with (T + 1)�R channels, are
passed through the third convolutional layer Conv3l. There
are also N output of this convolutional layer, denoted as
d

(l)
i ; i = 1; 2; :::N :

d
(l)
i = Conv3l(Stack(c

(l)
i ; b(l)); P aram3l); i = 1; 2; :::N:

(8)

Output: If l < L, this is not the last layer, the N outputs
of step (4) will be the output of layer Hl. Otherwise, we
add another merging and a common convolutional layer after
Conv3l to merge data into one output image y. The merging
layer is identical to the previous Mergel, merging the N
outputs d

(l)
i into T � R channels e

(l)
tr . This is followed by

a convolutional layer to generate a single channel of output y.

fe(L)
tr ; t � T; r � Rg = Merge′L(fd(L)

i ; i � Ng);
y = Conv′L(fe(L)

tr ; t � T; r � Rg):
(9)

V. IMPLEMENTATION & TRAINING

In our experiment, we are forced to collect the training
dataset on our own. To the best of our knowledge, there is no
publicly available image dataset built for shoulder-surfing, and
because of the uniqueness of our application, i.e., blurriness,
targeting characters, working with burst mode snapshots, etc.,
we cannot find any publicly available substitutes. To collect
training data, we use two smartphones, one for the attacker,
taking snapshots and running SRPeek, and one for the
victim, displaying Chinese and English characters while taking
screenshots of itself as ground truth. The experimental setting
of this data collection phase is illustrated in Fig. 6(a).

The data was collected at different times of the day and
night, with different illumination and at different positions and
angles(tilting no more than 30 degrees). We collected 800,000
images in this way, modifying these environmental parameters
every 2,000 images. This process is time-consuming but can
be largely automated and is crucial for training a robust model.

VI. MODEL EVALUATION

We perform the following experiments with two commercial
off-the-shelf(COTS) smartphones: a Redmi 6A smartphone,
with a single rear camera with 13 million pixels and digital
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Fig. 6: The experimental setting, with the distance between
the attacker and the victim shortened for demonstration.

zoom only, and a HUAWEI P40 Pro, with multiple rear
cameras. The telephoto camera possesses up to 5� optical
zooming ability which we will utilize fully in our experiments.
The Peak Signal to Noise Ratio(PSNR) metric and Optical
Character Recognition (OCR) services are used to evaluate the
accuracy of our system(the latter using accuracy per character).

A. Performance in Controlled Environments

In these experiments, we train and test the model with
images captured with the same environment parameters, as
shown in Fig. 7. The traditional lens group is trained and tested
at 1-2 meters, while the optical lens is 5-7.5 meters, where less
than 5% of the characters can be read with the naked eye. This
model can achieve an OCR accuracy above 90% at 1.8m with
a traditional lens and at 6m with an optical lens. Performances
are relatively consistent both day and night, while increased
distances mean less data, causing more artifacts like missing
or misplaced strokes.

B. Performance in Random Environments

We train the model with data captured with varying envi-
ronmental parameters and test its ability at a new environment
setting. The results are shown in Fig. 8. The model can achieve
an OCR accuracy above 85% at 1.8m with traditional lens,
and above 90% at 6m with an optical lens. This verifies the
efficiency of our model for environment adaption.

C. Performance with Fewer Available Images

As mentioned in sec. IV, our model is designed to work
on any number of input images, which is requisite because in
specific scenarios, the data displayed on the victim’s screen is
transient and ever-changing, e.g., password entry.We evaluate
the impact of fewer available images on the performance of
the SR model, see fig. 9. This and the following experiment
are performed at the 1.8m daytime scenario for the traditional
lens and 6m daytime for the optical lens. Results show that
the model can achieve decent performance with at least ten
images, ample for most real-life scenarios.

D. Adapting Ability

We expose the model to training data containing fewer
variations of a specific environment parameter, and examine

TABLE I: Comparison with existing systems.

System SRPEEK SRCNN VideoSR

PSNR 13.3db 7.69db 8.40db
FLOPs 419K 857K 1020K

Parameters 405K 85K 1370K
OCR Accuracy 100% 10% 23%

TABLE II: Success rate in different tasks.
Accuracy Read text Type text Enter PIN Enter password

Raw Image 5% 0 0 0
SRPeek 100% 100% 100% 80%

its performance in new environments. The ’All’ group uses
all the training data, while the ’Light’, ’Distance’ and ’Angle’
groups only use data with the same lighting, distance, and
angle, respectively. The results are shown in fig. 10. For the
traditional lens, the effective range is closer, so the distance
parameter has little importance. In contrast, variations in the
light and angle parameters in the training data are crucial to a
robust model. For optical lenses, where the effective range is
further, the distance parameter surpasses the light parameter in
importance for training. The results indicate that attackers can
drastically reduce preparation time by omitting the distance or
light parameter variations for training data collection.

E. Comparison with Other Architectures

We train and test other widely used networks with the same
sets of data and evaluate their results. We chose SRCNN [18],
a commonly used single image SR network, applying it to
every image before merging the results by pixel-level average.
We also used a multi-frame version of CNN with 3D con-
volutions, originally designed for video super resolution [19]
(VideoSR). However, as mentioned above, it is challenging
for the single image approaches to utilize information and
distinguish the noisy and deformed patterns. In contrast,
VideoSR approaches rely upon consistency between frames,
so they fail to give satisfactory results. The results are shown
in Table I.We can see that the PSNR of SRPEEK is 13.32dB
which is 73.2% and 58.6% higher than SRCNN and VideoSR,
with fewer memory and computation overhead. StARe has
the least floating-point operations(FLOPS). SRCNN has the
smaller parameter count than StARe, but it’s a single frame
SR model and have to be run once for each input frame. For
the OCR accuracy, SRPEEK can recognize all characters, but
SRCNN and VideoSR can only recognize 10% and 23% of
them. The results show the superiority of our SR model.

VII. CASE STUDY

A. Accuracy

We build the system on smartphones and evaluate its
performance in real-life scenarios (shown in Fig. 6(b)). We
experiment with a Redmi 6A smartphone (with a camera of
13 million pixels, no optical zooming) for the attacker and a


