Elastic Graph Neural Networks

Xiaorui Liu
Joint work with Wei Jin (co-first author),
Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang,
Ming Yan & Jiliang Tang

Michigan State University

ICML 2021, July 21st
Data as Graphs

- Social Graphs
- Transportation Graphs
- Brain Graphs
- Web Graphs
- Molecular Graphs
- Gene Graphs
Machine Learning on Graphs

Representation Learning on Graphs

Graph

Features/Representation

Traditional i.i.d. data

Classification

Clustering

......

Ranking
Graph Neural Networks

Message Passing

\[m_i^{(k+1)} = \sum_{v_j \in N(v_i)} M_k \left(h_i^{(k)}, h_j^{(k)}, e_{ij} \right) \]

Feature Updating

\[h_i^{(k+1)} = U_k \left(h_i^{(k)}, m_i^{(k+1)} \right) \]

Neural Message Passing for Quantum Chemistry, Justin Gilmer et al, ICML 2017
A Unified View on Message Passing

"Noisy Signal"

Graph

"Clean Signal"

"Nodes are similar to their neighbors"

\[
\text{arg min}_F \mathcal{L}(F) := \|F - X_{in}\|_F^2 + \mathcal{R}(F, \tilde{L})
\]

Close to the input
Smoothness prior

A unified view on graph neural networks as graph signal denoising, Yao Ma, Xiaorui Liu et al, 2020
A Unified View on Message Passing

\[\arg \min_{\mathbf{F}} \mathcal{L}(\mathbf{F}) := \| \mathbf{F} - \mathbf{X}_{\text{in}} \|_F^2 + \mathcal{R}(\mathbf{F}, \tilde{\mathbf{L}}) \]

Close to the input \quad Smoothness prior

Define Prior \iff Optimization Solver \iff Message Passing

Example

\[\mathcal{R}(\mathbf{F}, \tilde{\mathbf{L}}) = \lambda \, \text{tr}(\mathbf{F}^\top \tilde{\mathbf{L}} \mathbf{F}) = \lambda \sum_{(v_i, v_j) \in \mathcal{E}} \left\| \frac{\mathbf{F}_i}{\sqrt{d_i + 1}} - \frac{\mathbf{F}_j}{\sqrt{d_j + 1}} \right\|_2^2 \]

- **GCN**
 \[\mathbf{X}_{\text{out}} = \tilde{\mathbf{A}} \mathbf{X}_{\text{in}} \]

- **PPNP**
 \[\mathbf{X}_{\text{out}} = \alpha (\mathbf{I} - (1 - \alpha)\tilde{\mathbf{A}})^{-1} \mathbf{X}_{\text{in}} \]

- **APPNP/GCNII**
 \[\mathbf{X}^{(k+1)} = (1 - \alpha)\tilde{\mathbf{A}} \mathbf{X}^{(k)} + \alpha \mathbf{X}_{\text{in}} \]

A unified view on graph neural networks as graph signal denoising, Yao Ma, Xiaorui Liu et al, 2020
Global Smoothness

\[
\arg \min_F \mathcal{L}(F) := \|F - X_{in}\|_F^2 + \mathcal{R}(F, \tilde{L})
\]

Close to the input \quad Smoothness prior

Example

\[
\mathcal{R}(F, \tilde{L}) = \lambda \text{tr}(F^T\tilde{L}F) = \lambda \sum_{(v_i, v_j) \in E} \left\| \frac{F_i}{\sqrt{d_i} + 1} - \frac{F_j}{\sqrt{d_j} + 1} \right\|_2^2
\]

- **GCN** \quad \(X_{out} = \tilde{A}X_{in} \)
- **PPNP** \quad \(X_{out} = \alpha(I - (1 - \alpha)\tilde{A})^{-1}X_{in} \)
- **APPNP/GCNII** \quad \(X^{(k+1)} = (1 - \alpha)\tilde{A}X^{(k)} + \alpha X_{in} \)

These MP schemes enforce global smoothness shared across the whole graph
Local Smoothness

Can we enhance local smoothness adaptively across different region over the graph?

Noise graph structure
Local Smoothness

Adversarial graph attack

Graph attack

Feature smoothness

Graph Structure Learning for Robust Graph Neural Networks,
Trend Filtering

Nonparametric regression (univariate)

\[\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^n} \frac{1}{2} \| y - \beta \|_2^2 + \frac{n^k}{k!} \cdot \lambda \| D^{(k+1)} \beta \|_1 \]

Adapt to the local level of smoothness

\[D^{(1)} = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & & & & & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix} \in \mathbb{R}^{(n-1) \times n} \]

\[D^{(k+1)} = D^{(1)} \cdot D^{(k)} \]

\[L_1 \text{ Trend filtering}, \ S.-J. \ Kim \ et \ al, \ SIAM \ Review, \ 2009 \]

Graph Trend Filtering

GTF

\[
\arg \min_{f \in \mathbb{R}^n} \frac{1}{2} \| f - x \|^2 + \lambda \| \Delta^{(k+1)} f \|_1
\]

Incident matrix \(\Delta \ell = (0, \ldots, -1, \ldots, 1, \ldots, 0) \)

\[
\| \Delta^{(1)} f \|_1 = \sum_{(v_i, v_j) \in E} |f_i - f_j|
\]

\[
\Delta^{(k+1)} = \begin{cases}
\Delta^\top \Delta^{(k)} = L^{\frac{k+1}{2}} & \in \mathbb{R}^{n \times n} \quad \text{for odd } k \\
\Delta \Delta^{(k)} = \Delta L^{\frac{k}{2}} & \in \mathbb{R}^{m \times n} \quad \text{for even } k
\end{cases}
\]

Trend filtering on graphs, Yu-Xiang Wang et al, JMLR 2016
Graph Trend Filtering

\[\arg \min_{f \in \mathbb{R}^n} \frac{1}{2} \| f - x \|_2^2 + \lambda \| \Delta^{(k+1)} f \|_1 \]

Local smoothness adaptivity: piecewise behavior

Trend filtering on graphs, Yu-Xiang Wang et al, JMLR 2016
Elastic Graph Signal Estimator

\[
\arg \min_{\mathbf{F}} \mathcal{L}(\mathbf{F}) := \| \mathbf{F} - \mathbf{X}_{\text{in}} \|_F^2 + \mathcal{R}(\mathbf{F}, \tilde{\mathbf{L}})
\]

Close to the input

Smoothness prior

New smoothness prior

\[
\mathcal{R}(\mathbf{F}, \tilde{\mathbf{L}}) = \lambda_1 \| \tilde{\Delta} \mathbf{F} \|_1 + \frac{\lambda_2}{2} \text{tr}(\mathbf{F}^\top \tilde{\mathbf{L}} \mathbf{F})
\]

\[
\tilde{\Delta} = \Delta \mathbf{D}^{-\frac{1}{2}}
\]

\[
\| \tilde{\Delta} \mathbf{F} \|_1 = \sum_{(v_i, v_j) \in \mathcal{E}} \left\| \frac{\mathbf{F}_i}{\sqrt{d_i} + 1} - \frac{\mathbf{F}_j}{\sqrt{d_j} + 1} \right\|_1
\]

\[
\text{tr}(\mathbf{F}^\top \tilde{\mathbf{L}} \mathbf{F}) = \sum_{(v_i, v_j) \in \mathcal{E}} \left\| \frac{\mathbf{F}_i}{\sqrt{d_i} + 1} - \frac{\mathbf{F}_j}{\sqrt{d_j} + 1} \right\|_2^2
\]

Coupling multi-dimensionality

\[
\mathcal{R}(\mathbf{F}, \tilde{\mathbf{L}}) = \lambda_1 \| \tilde{\Delta} \mathbf{F} \|_{21} + \frac{\lambda_2}{2} \text{tr}(\mathbf{F}^\top \tilde{\mathbf{L}} \mathbf{F})
\]

\[
\| \tilde{\Delta} \mathbf{F} \|_{21} = \sum_{(v_i, v_j) \in \mathcal{E}} \left\| \frac{\mathbf{F}_i}{\sqrt{d_i} + 1} - \frac{\mathbf{F}_j}{\sqrt{d_j} + 1} \right\|_2
\]

\[
\text{tr}(\mathbf{F}^\top \tilde{\mathbf{L}} \mathbf{F}) = \sum_{(v_i, v_j) \in \mathcal{E}} \left\| \frac{\mathbf{F}_i}{\sqrt{d_i} + 1} - \frac{\mathbf{F}_j}{\sqrt{d_j} + 1} \right\|_2^2
\]

Data Science and Engineering Lab
Elastic Graph Signal Estimator

Option I

\[
\arg \min_{F \in \mathbb{R}^{n \times d}} \lambda_1 \| \tilde{\Delta} F \|_1 + \frac{\lambda_2}{2} \text{tr}(F^\top \tilde{L} F) + \frac{1}{2} \| F - X_{\text{in}} \|_F^2
\]

\[
\| \tilde{\Delta} F \|_1 = \sum_{(v_i, v_j) \in \mathcal{E}} \left\| \frac{F_i}{\sqrt{d_i} + 1} - \frac{F_j}{\sqrt{d_j} + 1} \right\|_1
\]

Option II

\[
\arg \min_{F \in \mathbb{R}^{n \times d}} \lambda_1 \| \tilde{\Delta} F \|_{21} + \frac{\lambda_2}{2} \text{tr}(F^\top \tilde{L} F) + \frac{1}{2} \| F - X_{\text{in}} \|_F^2
\]

\[
\| \tilde{\Delta} F \|_{21} = \sum_{(v_i, v_j) \in \mathcal{E}} \left\| \frac{F_i}{\sqrt{d_i} + 1} - \frac{F_j}{\sqrt{d_j} + 1} \right\|_2
\]

Define Prior \iff Optimization Solver \iff Message Passing
Elastic Graph Signal Estimator

\[\text{arg min}_{F \in \mathbb{R}^{n \times d}} \underbrace{\lambda_1 \|	ilde{\Delta} F\|_{21}}_{g_{21}(\tilde{\Delta} F)} + \underbrace{\frac{\lambda_2}{2} \text{tr}(F^\top L F)}_{f(F)} + \frac{1}{2} \|F - X_{\text{in}}\|_F^2 \]

Saddle-point reformulation

\[\min_{F} \max_{Z} f(F) + \langle \tilde{\Delta} F, Z \rangle - g^*(Z) \quad g^*(Z) := \sup_{X} \langle Z, X \rangle - g(X) \]

A simple and efficient primal dual solver

\[
\begin{align*}
F^{k+1} & = F^k - \gamma \nabla f(F^k) - \gamma \tilde{\Delta}^\top Z^k, \\
Z^{k+1} & = \text{prox}_{\beta g^*}(Z^k + \beta \tilde{\Delta} F^{k+1}), \\
F^{k+1} & = F^k - \gamma \nabla f(F^k) - \gamma \tilde{\Delta}^\top Z^{k+1},
\end{align*}
\]
Elastic Message Passing

\[
\begin{align*}
Y^{k+1} &= \gamma X_{in} + (1 - \gamma) \tilde{A} F^k \\
\tilde{F}^{k+1} &= Y^k - \gamma \tilde{\Delta}^\top Z^k \\
\tilde{Z}^{k+1} &= Z^k + \beta \tilde{\Delta} \tilde{F}^{k+1} \\
\{ \\
Z^{k+1} &= \min(\|\tilde{Z}^{k+1}\|_1, \lambda_1) \cdot \text{sign}(\tilde{Z}^{k+1}) \quad \text{(Option I: } \ell_1 \text{ norm)} \\
Z_i^{k+1} &= \min(\|\tilde{Z}_i^{k+1}\|_2, \lambda_1) \cdot \frac{\tilde{Z}_i^{k+1}}{\|\tilde{Z}_i^{k+1}\|_2}, \forall i \in [m] \quad \text{(Option II: } \ell_{21} \text{ norm)} \\
F^{k+1} &= Y^k - \gamma \tilde{\Delta}^\top Z^{k+1}
\}\end{align*}
\]

Figure 1. Elastic Message Passing (EMP). \(F^0 = X_{in}\) and \(Z^0 = 0^{m \times d}\).

Interpretation

- \(\lambda_1 = 0\): standard message passing in Y
 - \(\gamma = \frac{1}{1 + \lambda_2}, \lambda_2 = \frac{1}{\alpha} - 1\): \(F^{k+1} = \alpha X_{in} + (1 - \alpha) \tilde{A} F^k\)
 - \(\gamma = \frac{1}{1 + \lambda_2}, \lambda_2 = +\infty\): \(F^{k+1} = \tilde{A} F^k\)
- \(\lambda_1 > 0\): accumulate \(\tilde{\Delta}^\top Z\) to promote sparsity in \(\tilde{\Delta} F\) and preserve jump edge
Elastic Message Passing

\[
\begin{align*}
\mathbf{Y}^{k+1} &= \gamma \mathbf{X}_\text{in} + (1 - \gamma) \tilde{\mathbf{A}} \mathbf{F}^k \\
\mathbf{F}^{k+1} &= \mathbf{Y}^k - \gamma \tilde{\mathbf{A}}^\top \mathbf{Z}^k \\
\mathbf{Z}^{k+1} &= \mathbf{Z}^k + \beta \tilde{\mathbf{A}} \mathbf{F}^{k+1}
\end{align*}
\]

\[
\begin{cases}
\mathbf{Z}^{k+1} = \min(|\tilde{\mathbf{Z}}^{k+1}|, \lambda_1) \cdot \text{sign}(\tilde{\mathbf{Z}}^{k+1}) & \text{(Option I: } \ell_1 \text{ norm)} \\
\mathbf{Z}_i^{k+1} = \min(\|\tilde{\mathbf{Z}}_i^{k+1}\|_2, \lambda_1) \cdot \frac{\tilde{\mathbf{Z}}_i^{k+1}}{\|\tilde{\mathbf{Z}}_i^{k+1}\|_2}, \forall i \in [m] & \text{(Option II: } \ell_{21} \text{ norm)} \\
\mathbf{F}^{k+1} &= \mathbf{Y}^k - \gamma \tilde{\mathbf{A}}^\top \mathbf{Z}^{k+1}
\end{cases}
\]

Figure 1. Elastic Message Passing (EMP). \(\mathbf{F}^0 = \mathbf{X}_\text{in} \) and \(\mathbf{Z}^0 = \mathbf{0}^{m \times d} \).

Theorem (Convergence)

Under the stepsize setting \(\gamma < \frac{2}{1 + \lambda_2 \|\mathbf{\tilde{L}}\|_2} \) and \(\beta \leq \frac{4}{3\gamma \|\tilde{\mathbf{A}} \mathbf{\tilde{A}}^\top\|_2} \), the elastic message passing scheme (EMP) converges to the optimal solution of the elastic graph signal estimator. It is sufficient to choose any \(\gamma < \frac{2}{1 + 2\lambda_2} \) and \(\beta \leq \frac{2}{3\gamma} \) since \(\|\mathbf{\tilde{L}}\|_2 = \|\tilde{\mathbf{A}}^\top \tilde{\mathbf{A}}\|_2 = \|\tilde{\mathbf{A}} \mathbf{\tilde{A}}^\top\|_2 \leq 2 \).

In this work, we fix \(\gamma = \frac{1}{1 + \lambda_2}, \beta = \frac{1}{2\gamma} \).
Elastic GNNs

\[Y_{pre} = \text{EMP} \left(h_{\theta}(X_{\text{fea}}), K, \lambda_1, \lambda_2 \right) \]

- Follow the decoupled architecture as PPNP but can be used in coupled architecture as well
- EMP is composed by simple and efficient operations, which is friendly to efficient and back-propagation training
- Hyperparameters \(\lambda_1 \) and \(\lambda_2 \) provide better smoothness adaptivity
- Doesn’t require a very large \(K \)
Performance on benchmark datasets

Semi-supervised learning for node classification

Table 1. Classification accuracy (%) on benchmark datasets with 10 times random data splits.

<table>
<thead>
<tr>
<th>Model</th>
<th>Cora</th>
<th>CiteSeer</th>
<th>PubMed</th>
<th>CS</th>
<th>Physics</th>
<th>Computers</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChebNet</td>
<td>76.3 ± 1.5</td>
<td>67.4 ± 1.5</td>
<td>75.0 ± 2.0</td>
<td>91.8 ± 0.4</td>
<td>OOM</td>
<td>81.0 ± 2.0</td>
<td>90.4 ± 1.0</td>
</tr>
<tr>
<td>GCN</td>
<td>79.6 ± 1.1</td>
<td>68.9 ± 1.2</td>
<td>77.6 ± 2.3</td>
<td>91.6 ± 0.6</td>
<td>93.3 ± 0.8</td>
<td>79.8 ± 1.6</td>
<td>90.3 ± 1.2</td>
</tr>
<tr>
<td>GAT</td>
<td>80.1 ± 1.2</td>
<td>68.9 ± 1.8</td>
<td>77.6 ± 2.2</td>
<td>91.1 ± 0.5</td>
<td>93.3 ± 0.7</td>
<td>79.3 ± 2.4</td>
<td>89.6 ± 1.6</td>
</tr>
<tr>
<td>SGC</td>
<td>80.2 ± 1.5</td>
<td>68.9 ± 1.3</td>
<td>75.5 ± 2.9</td>
<td>90.1 ± 1.3</td>
<td>93.1 ± 0.6</td>
<td>73.0 ± 2.0</td>
<td>83.5 ± 2.9</td>
</tr>
<tr>
<td>APPNP</td>
<td>82.2 ± 1.3</td>
<td>70.4 ± 1.2</td>
<td>78.9 ± 2.2</td>
<td>92.5 ± 0.3</td>
<td>93.7 ± 0.7</td>
<td>80.1 ± 2.1</td>
<td>90.8 ± 1.3</td>
</tr>
<tr>
<td>GraphSAGE</td>
<td>79.0 ± 1.1</td>
<td>67.5 ± 2.0</td>
<td>77.6 ± 2.0</td>
<td>91.7 ± 0.5</td>
<td>92.5 ± 0.8</td>
<td>80.7 ± 1.7</td>
<td>90.9 ± 1.0</td>
</tr>
<tr>
<td>ElasticGNN</td>
<td>82.7 ± 1.0</td>
<td>70.9 ± 1.4</td>
<td>79.4 ± 1.8</td>
<td>92.5 ± 0.3</td>
<td>94.2 ± 0.5</td>
<td>80.7 ± 1.8</td>
<td>91.3 ± 1.3</td>
</tr>
</tbody>
</table>

ElasticGNN: $L_{21}+L_2$
Performance on benchmark datasets

Better local smoothness adaptivity

Table 3. Ratio between average node differences along wrong and correct edges.

<table>
<thead>
<tr>
<th>Model</th>
<th>Cora</th>
<th>CiteSeer</th>
<th>PubMed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_2 (APPNP)</td>
<td>1.57</td>
<td>1.35</td>
<td>1.43</td>
</tr>
<tr>
<td>$\ell_{21}+\ell_2$ (ElasticGNN)</td>
<td>2.03</td>
<td>1.94</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Piecewise constant prior

Table 4. Sparsity ratio (i.e., $\| (\tilde{\Delta F}_i) \|_2 < 0.1$) in node differences $\tilde{\Delta F}$.

<table>
<thead>
<tr>
<th>Model</th>
<th>Cora</th>
<th>CiteSeer</th>
<th>PubMed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_2 (APPNP)</td>
<td>2%</td>
<td>16%</td>
<td>11%</td>
</tr>
<tr>
<td>$\ell_{21}+\ell_2$ (ElasticGNN)</td>
<td>37%</td>
<td>74%</td>
<td>42%</td>
</tr>
</tbody>
</table>
Performance on benchmark datasets

Impact of K

![Graph showing the impact of K on test accuracy across different propagation steps.

Convergence of EMP

![Graph showing the convergence of the objective value for the problem in Eq. (8) during message passing.

Figure 2. Classification accuracy under different propagation steps.

Figure 3. Convergence of the objective value for the problem in Eq. (8) during message passing.
Performance under adversarial attack

Table 2. Classification accuracy (%) under different perturbation rates of adversarial graph attack.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Ptb Rate</th>
<th>Basic GNN</th>
<th>Elastic GNN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GCN</td>
<td>GAT</td>
</tr>
<tr>
<td>Cora</td>
<td>0%</td>
<td>83.5±0.4</td>
<td>84.0±0.7</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>76.6±0.8</td>
<td>80.4±0.7</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>70.4±1.3</td>
<td>75.6±0.6</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>65.1±0.7</td>
<td>69.8±1.3</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>60.0±2.7</td>
<td>59.9±0.6</td>
</tr>
<tr>
<td>Citeseer</td>
<td>0%</td>
<td>72.0±0.6</td>
<td>73.3±0.8</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>70.9±0.6</td>
<td>72.9±0.8</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>67.6±0.9</td>
<td>70.6±0.5</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>64.5±1.1</td>
<td>69.0±1.1</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>62.0±3.5</td>
<td>61.0±1.5</td>
</tr>
<tr>
<td>Polblogs</td>
<td>0%</td>
<td>95.7±0.4</td>
<td>95.4±0.2</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>73.1±0.8</td>
<td>83.7±1.5</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>70.7±1.1</td>
<td>76.3±0.9</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>65.0±1.9</td>
<td>68.8±1.1</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>51.3±1.2</td>
<td>51.5±1.6</td>
</tr>
<tr>
<td>Pubmed</td>
<td>0%</td>
<td>87.2±0.1</td>
<td>83.7±0.4</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>83.1±0.1</td>
<td>78.0±0.4</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>81.2±0.1</td>
<td>74.9±0.4</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>78.7±0.1</td>
<td>71.1±0.5</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>77.4±0.2</td>
<td>68.2±1.0</td>
</tr>
</tbody>
</table>

Basic GNNs < Elastic GNNs
Performance under adversarial attack

Table 2. Classification accuracy (%) under different perturbation rates of adversarial graph attack.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Pt Rate</th>
<th>Basic GNN</th>
<th></th>
<th>Elastic GNN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GCN</td>
<td>GAT</td>
<td>ℓ_2</td>
<td>ℓ_1</td>
</tr>
<tr>
<td>Cora</td>
<td>0%</td>
<td>83.5±0.4</td>
<td>84.0±0.7</td>
<td>85.8±0.4</td>
<td>85.1±0.5</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>76.6±0.8</td>
<td>80.4±0.7</td>
<td>81.0±1.0</td>
<td>82.3±1.1</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>70.4±1.3</td>
<td>75.6±0.6</td>
<td>76.3±1.5</td>
<td>76.2±1.4</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>65.1±0.7</td>
<td>69.8±1.3</td>
<td>72.2±0.9</td>
<td>73.3±1.3</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>60.0±2.7</td>
<td>59.9±0.6</td>
<td>67.7±0.7</td>
<td>63.7±0.9</td>
</tr>
<tr>
<td>Citeseer</td>
<td>0%</td>
<td>72.0±0.6</td>
<td>73.3±0.8</td>
<td>73.6±0.9</td>
<td>73.2±0.6</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>70.9±0.6</td>
<td>72.9±0.8</td>
<td>72.8±0.5</td>
<td>72.8±0.5</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>67.6±0.9</td>
<td>70.6±0.5</td>
<td>70.2±0.6</td>
<td>70.8±0.6</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>64.5±1.1</td>
<td>69.0±1.1</td>
<td>70.2±0.6</td>
<td>68.1±1.4</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>62.0±3.5</td>
<td>61.0±1.5</td>
<td>64.9±1.0</td>
<td>64.7±0.8</td>
</tr>
<tr>
<td>Polblogs</td>
<td>0%</td>
<td>95.7±0.4</td>
<td>95.4±0.2</td>
<td>95.4±0.2</td>
<td>95.8±0.3</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>73.1±0.8</td>
<td>83.7±1.5</td>
<td>82.8±0.3</td>
<td>78.7±0.6</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>70.7±1.1</td>
<td>76.3±0.9</td>
<td>73.7±0.3</td>
<td>75.2±0.4</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>65.0±1.9</td>
<td>68.8±1.1</td>
<td>68.9±0.9</td>
<td>72.1±0.9</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>51.3±1.2</td>
<td>51.5±1.6</td>
<td>65.5±0.7</td>
<td>68.1±0.6</td>
</tr>
<tr>
<td>Pubmed</td>
<td>0%</td>
<td>87.2±0.1</td>
<td>83.7±0.4</td>
<td>88.1±0.1</td>
<td>86.7±0.1</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>83.1±0.1</td>
<td>78.0±0.4</td>
<td>87.1±0.2</td>
<td>86.2±0.1</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>81.2±0.1</td>
<td>74.9±0.4</td>
<td>86.6±0.1</td>
<td>86.0±0.2</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>78.7±0.1</td>
<td>71.1±0.5</td>
<td>85.7±0.2</td>
<td>85.4±0.2</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>77.4±0.2</td>
<td>68.2±1.0</td>
<td>85.8±0.1</td>
<td>85.4±0.1</td>
</tr>
</tbody>
</table>

$L_2 < L_{21}$ in most cases
Table 2. Classification accuracy (%) under different perturbation rates of adversarial graph attack.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Ptb Rate</th>
<th>Basic GNN</th>
<th>Elastic GNN</th>
<th>(\ell_2)</th>
<th>(\ell_1)</th>
<th>(\ell_{21})</th>
<th>(\ell_1 + \ell_2)</th>
<th>(\ell_{21} + \ell_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GCN</td>
<td>GAT</td>
<td>(\ell_2)</td>
<td>(\ell_1)</td>
<td>(\ell_{21})</td>
<td>(\ell_1 + \ell_2)</td>
<td>(\ell_{21} + \ell_2)</td>
</tr>
<tr>
<td>Cora</td>
<td>0%</td>
<td>83.5±0.4</td>
<td>84.0±0.7</td>
<td>85.8±0.4</td>
<td>85.1±0.5</td>
<td>85.3±0.4</td>
<td>85.8±0.4</td>
<td>85.8±0.4</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>76.6±0.8</td>
<td>80.4±0.7</td>
<td>81.0±1.0</td>
<td>82.3±1.1</td>
<td>81.6±1.1</td>
<td>81.9±1.4</td>
<td>82.2±0.9</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>70.4±1.3</td>
<td>75.6±0.6</td>
<td>76.3±1.5</td>
<td>76.2±1.4</td>
<td>77.9±0.9</td>
<td>78.2±1.6</td>
<td>78.8±1.7</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>65.1±0.7</td>
<td>69.8±1.3</td>
<td>72.2±0.9</td>
<td>73.3±1.3</td>
<td>75.7±1.2</td>
<td>76.9±0.9</td>
<td>77.2±1.6</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>60.0±2.7</td>
<td>59.9±0.6</td>
<td>67.7±0.7</td>
<td>63.7±0.9</td>
<td>70.3±1.1</td>
<td>67.2±5.3</td>
<td>70.5±1.3</td>
</tr>
<tr>
<td>Citeseer</td>
<td>0%</td>
<td>72.0±0.6</td>
<td>73.3±0.8</td>
<td>73.6±0.9</td>
<td>73.2±0.6</td>
<td>73.2±0.5</td>
<td>73.6±0.6</td>
<td>73.8±0.6</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>70.9±0.6</td>
<td>72.9±0.8</td>
<td>72.8±0.5</td>
<td>72.8±0.5</td>
<td>72.8±0.5</td>
<td>73.3±0.6</td>
<td>72.9±0.5</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>67.6±0.9</td>
<td>70.6±0.5</td>
<td>70.2±0.6</td>
<td>70.8±0.6</td>
<td>70.7±1.2</td>
<td>72.4±0.9</td>
<td>72.6±0.4</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>64.5±1.1</td>
<td>69.0±1.1</td>
<td>70.2±0.6</td>
<td>68.1±1.4</td>
<td>68.2±1.1</td>
<td>71.3±1.5</td>
<td>71.9±0.7</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>62.0±3.5</td>
<td>61.0±1.5</td>
<td>64.9±1.0</td>
<td>64.7±0.8</td>
<td>64.7±0.8</td>
<td>64.7±0.8</td>
<td>64.7±0.8</td>
</tr>
<tr>
<td>Polblogs</td>
<td>0%</td>
<td>95.7±0.4</td>
<td>95.4±0.2</td>
<td>95.4±0.2</td>
<td>95.8±0.3</td>
<td>95.8±0.3</td>
<td>95.8±0.3</td>
<td>95.8±0.3</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>73.1±0.8</td>
<td>83.7±1.5</td>
<td>82.8±0.3</td>
<td>78.7±0.6</td>
<td>78.7±0.7</td>
<td>82.8±0.4</td>
<td>83.0±0.3</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>70.7±1.1</td>
<td>76.3±0.9</td>
<td>73.7±0.3</td>
<td>75.2±0.4</td>
<td>75.3±0.7</td>
<td>81.5±0.2</td>
<td>81.6±0.3</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>65.0±1.9</td>
<td>68.8±1.1</td>
<td>68.9±0.9</td>
<td>72.1±0.9</td>
<td>71.5±1.1</td>
<td>77.8±0.9</td>
<td>78.7±0.5</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>51.3±1.2</td>
<td>51.5±1.6</td>
<td>65.5±0.7</td>
<td>68.1±0.6</td>
<td>68.7±0.7</td>
<td>77.4±0.2</td>
<td>77.5±0.2</td>
</tr>
<tr>
<td>Pubmed</td>
<td>0%</td>
<td>87.2±0.1</td>
<td>83.7±0.4</td>
<td>88.1±0.1</td>
<td>86.7±0.1</td>
<td>87.3±0.1</td>
<td>88.1±0.1</td>
<td>88.1±0.1</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>83.1±0.1</td>
<td>78.0±0.4</td>
<td>87.1±0.2</td>
<td>86.2±0.1</td>
<td>87.0±0.1</td>
<td>87.1±0.2</td>
<td>87.1±0.2</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>81.2±0.1</td>
<td>74.9±0.4</td>
<td>86.6±0.1</td>
<td>86.0±0.2</td>
<td>86.9±0.2</td>
<td>86.3±0.1</td>
<td>87.0±0.1</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>78.7±0.1</td>
<td>71.1±0.5</td>
<td>85.7±0.2</td>
<td>85.4±0.2</td>
<td>86.4±0.2</td>
<td>85.5±0.1</td>
<td>86.4±0.2</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>77.4±0.2</td>
<td>68.2±1.0</td>
<td>85.8±0.1</td>
<td>85.4±0.1</td>
<td>86.4±0.1</td>
<td>85.4±0.1</td>
<td>86.4±0.1</td>
</tr>
</tbody>
</table>

\[L_1 + L_2 < L_{21} + L_2\] in most cases
Conclusion

Summary
• Introduce L_1 based graph smoothing in the design of GNNs, for the first time
• Derive a novel and general message passing scheme, i.e., EMP
• Develop a family of GNNs, i.e., Elastic GNNs
• Demonstrate better smoothness adaptivity of Elastic GNNs
• Elastic GNNs are intrinsically more robust to adversarial graph attacks and compatible with any other defense strategies

Future directions
• Other node level tasks such as link prediction, community detection, and outlier detection
• Graph level tasks such as graph classification and graph similarity measure
• Higher-order graph difference operators
• EMP as a building block in other GNN architectures

Code: https://github.com/lxiaorui/ElasticGNN
Acknowledgement

Thanks for the funding support from National Science Foundation (NSF), Army Research Office (ARO) and Facebook Faculty Research Award.