
Optimal In-Place Self-Organization for Cortical Development:
Limited Cells, Sparse Coding and Cortical Topography

Juyang Weng and Matthew D. Luciw
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824 USA

in Proc. International Conference on Development and Learning, Bloomington, IN, USA, May 31 - June 3, 2006.

Abstract— Cortical self-organization during open-ended de-
velopment is a core issue for perceptual development. Tradi-
tionally, unsupervised learning and supervised learning are two
different types of learning conducted by different networks.
However, there is no evidence that the biological nervous system
treats them in a disintegrated way. The computational model
presented here integrates both types of learning using a new
biologically inspired network whose learning is in-place. By
in-place learning, we mean that each neuron in the network
learns on its own while interacting with other neurons. There
is no need for a separate learning network. We present in
this paper the Multi-layer In-place Learning Network (MILN)
for regression and classification. This work concentrates on its
two-layer version for global pattern detection (without incorpo-
rating an attention selection mechanism). It reports properties
about limited cells, sparse coding and cortical topography. The
network enables both unsupervised and supervised learning
to occur concurrently. Within each layer, the adaptation of
each neuron is nearly-optimal in the sense of the least possible
estimation error given the observations. Experimental results
are presented to show the effects of the properties investigated.

Index Terms— Biological cortical learning, statistical effi-
ciency, minimum error, self-organization, incremental learning

I. INTRODUCTION

What are the possible mechanisms that lead to the emer-
gence of the orientation cells in V1? Since V1 takes input
from the retina, LGN, and other cortical areas, the issue
points to the developmental mechanisms for the formation
and adaptation of the multi-layer pathways of visual pro-
cessing.

Well known unsupervised learning algorithms include Self-
Organizing Map (SOM), vector quantization, PCA, Indepen-
dent Component Analysis (ICA), Isomap, and Non-negative
Matrix Factorization (NMF). Only a few of these algorithms
have been expressed by in-place versions (e.g., SOM and
PCA [11]).

Supervised learning networks include feed-forward net-
works with back-propagation learning, radial-basis functions
with iterative model fitting (based on gradient or similar
principles), Cascade-Correlation Learning Architecture [2],
support vector machines (SVM), and Hierarchical Discrimi-
nant Regression (HDR) [3].

However, it is not convincing that biological networks
use two different types of networks for unsupervised and
supervised learning, which occur in an intertwined way in
the process of development. When a child learns to draw, his
parent can hold his hand during some periods to guide his
hand movement (i.e., supervised) but leave him practicing
on his own during other periods (i.e., unsupervised). Does
the brain switch between two totally different networks,
one for supervised moments and the other for unsupervised
moments? The answer to this type of question is not clear at
the current stage of knowledge. However, there is evidence
that the cortex has wide-spread projections both bottom-up
and top-down [8] (pages 99-103). For example, cells in layer
6 in V1 project back to the lateral geniculate nucleus [5]
(page 533). Can projections from later cortical areas be used
as supervision signals?

Currently there is a lack of biologically inspired networks
that integrate these two different learning modes using a
single learning network. The network model proposed here
enables unsupervised and supervised learning to take place
at the same time throughout the network.

One of the major advantages of supervised learning is
the development of certain invariant representations. Some
networks have built-in (programmed-in) invariance, either
spatial, temporal or some other signal properties. Other
networks do not have built-in invariance. The required global
invariance then must be learned object-by-object. However,
they cannot share invariance of subparts (or locally invariant
features) for different objects. Consequently, the number of
samples needed to reach the desired global invariance in
object recognition is very large.

This paper proposes a new, general-purpose, multi-layer
network, which learns invariance from experience. The net-
work is biologically inspired. The network has multiple
layers; later layers take the response from early layers as
their input. This work concentrates on two layers. The net-
work enables supervision from two types of projections: (a)
supervision from the succeeding layer; (b) supervision from
other cortical regions (e.g., as attention selection signals). The
network is self-organized with unsupervised signals (input
data) from bottom-up and supervised signals (motor signals,

attention selection, etc.) from top-down.
From a mathematical point of view, in each layer of the

network, unsupervised learning enables nodes (neurons) to
generate a self-organized map that approximates the statisti-
cal distribution of the bottom-up signals (input vector space),
while supervised learning adjusts the node density in such a
map so that those areas in the input space that are not related
(or weakly related) to the output from this layer receive no
(or fewer) nodes. Therefore, more nodes in each layer will
respond to output-relevant input components. This property
leads to increasing invariance from one layer to the next in
a multi-layer network. Finally, global invariance emerges at
the last (motor) layer.

Furthermore, we require in-place learning. By in-place
learning, we mean that the signal processing network itself
deals with its own adaptation through its own internal phys-
iological mechanisms and interactions with other connected
networks and, thus, there is no need to have an extra network
that accomplishes the leaning (adaptation). It is apparent that
a design of an in-place learning, biologically inspired network
that integrates both unsupervised and supervised learning is
not trivial.

In what follows, we first present the network structure in
Section II. Then, in Section III, we explain the in-place learn-
ing mechanism within each layer. Experimental examples
that demonstrate the effects of the discussed principles are
presented in Section IV. Section V provides some concluding
remarks.

II. THE MULTI-LAYER IN-PLACE LEARNING NETWORK

This section presents the architecture of the new Multi-
layer In-place Learning Networks (MILN), whose architec-
ture is shown in Fig. 1. For biological plausibility, assume
that the signals through the lines are non-negative signals that
indicate the firing rate. Two types of synaptic connections are
possible, excitatory and inhibitory.

This is a recurrent network. For each neuron i, at layer l,
there are three types of weights:

1) bottom-up (excitatory) weight vector wb that links
input lines from the previous layer l−1 to this neuron;

2) lateral (inhibitory) weight wh that links other neurons
in the same layer to this neuron.

3) top-down (excitatory or inhibitory) weight wt. It con-
sists of two parts: (a) the part that links the output from
the neurons in the next layer l + 1 to this neuron. (b)
The part that links the output of other layer processing
areas (e.g., other sensing modality) or layers (e.g., the
motor layer) to this neuron i. For notational simplicity,
we only consider excitatory top-down weight, which
selects neurons selected to increase their potential
values. Inhibitory top-down connection can be used
if the primary purpose is inhibition (e.g., inhibition
of neurons that have not been selected by attention
selection signals).

From other areas

Layer 1 Layer 2Layer 0 Layer 3

Output to
 motors

Sensory
 input

Fig. 1. The architecture of the Multi-layer In-place Learning
Networks. A circle indicates a cell (neuron). The thick segment from
each cell indicates its axon. The connection between a solid signal
line and a cell indicates an excitatory connection. The connection
between a dashed signal line and a cell indicates an inhibitory
connection. Projection from other areas indicates excitatory or
inhibitory supervision signals (e.g., excitatory attention selection).

Assume that this network computes in discrete times,
t = 0, 1, 2, ..., as a series of open-ended developmental
experience after the birth at time t = 0. This network
incorporates unsupervised learning and supervised learning.
For unsupervised learning, the network produces an output
vector at the output layer based on this recurrent computation.
For supervised learning, the desired output at the output layer
at time t is set (imposed) by the external teacher at time t.

III. IN-PLACE LEARNING

To better understand the nature of learning algorithms, we
define five types of learning algorithms:

Type-1 batch: A batch learning algorithm L1 computes g
and w using a batch of vector inputs B = {x1,x2, ...,xb},
where b is the batch size. Type-2 block-incremental: A type-
2 learning algorithm, L2, breaks a series of input vectors
into blocks of certain size b (b > 1) and computes updates
incrementally between blocks. Within each block, the pro-
cessing by L2 is in a batch fashion. Type-3 incremental:
Type-3 is the extreme case of Type-2 in the sense that block
size b = 1. Type-4 covariance-free incremental: A Type-
4 learning algorithm L4 is a Type-3 algorithm, but, it is
not allowed to compute the 2nd or higher order statistics
of the input x. The CCI PCA algorithm [11] is Type-
4 algorithm. Type-5 in-place neuron learning: A Type-5
learning algorithm L5 is a Type-4 algorithm, but further, the
learner L5 must be implemented by the signal processing
neuron. It is desirable that a developmental system uses an
in-place developmental program due to its simplicity and
biological plausibility. Further, biological in-place learning

mechanisms can facilitate our understanding of biological
systems since there is no evidence that each biological
network has a separate network to handle its learning.

The five types of algorithms have progressively more
restrictive conditions, with batch (Type-1) being the most
general and in-place (Type-5) being the most restrictive.

A. Three types of projections

Consider a more detailed computational model of a layer
within a multi-layer network. Suppose the input to the cortical
layer is y ∈ Y , the output from early neuronal processing.
However, for a recurrent network, y is not the only input. All
the input to a neuron can be divided into three parts: bottom-
up input from the previous layer y which is weighted by the
neuron’s bottom-up weight vector wb, lateral inhibition h

from other neurons of the same layer corresponding which is
weighted by the neuron’s lateral weight vector wh, and the
top-down input vector a which is weighted by the neuron’s
top-down weight vector wt. Therefore, the response z from
this neuron can be written as

z = g(wb · y −wh · h + wt · a). (1)

where g is its nonlinear sigmoidal function, taking into
account under-saturation (noise suppression), transition, and
over-saturation, and · denotes the dot production.

For digital computer, we simulate this analogue network
through discrete times t = 0, 1, 2, If the discrete sampling
rate is much faster than the change of inputs, such a discrete
simulation is expected to be a good approximation of the
network behavior.

B. Lateral projection

Lateral inhibition is a mechanism of competition among
neurons in the same layer. The output of A is used to inhibit
the output of neuron B which shares a part of the receptive
field, totally or partially, with A.

The net effect of lateral inhibition is that fewer winners
can fire. We use a computationally more effective scheme
to simulate lateral inhibition without resorting to iterations:
Sort all the responses. Keep top-k responding neurons to have
non-zero response. All other neurons have zero response (i.e.,
does not go beyond the under-saturation point).

C. Bottom-up projections

A neuron is updated using an input vector only when the
(absolute) response of the neuron to the input is high. This
is called Hebbian’s rule.

The rule of Hebbian learning is to update weights when
output is strong. And the rule of lateral inhibition is to
suppress neighbors when the neuron output is high.

D. Lobe components

Atick and coworkers [1] proposed that early sensory pro-
cessing decorrelates inputs. Weng et al. [11] proposed an
in-place algorithm that develops a network that whitens the
input. Therefore, we can assume that prior processing has
been done so that its output vector y is roughly white. By
white, we mean its components have unit variance and are
pairwise uncorrelated. The sample space of a k-dimensional
white input random vector y can be illustrated by a k-
dimensional hypersphere.

A concentration of the probability density of the input
space is called a lobe, which may have its own finer
structure (e.g., sublobes). The shape of a lobe can be of
any type, depending on the distribution. For non-negative
input components, the lobe components lie in the section
of the hypersphere where every component is non-negative
(corresponding to the first octant in 3-D).

Given a limited cortical resource, c cells fully connected
to input y, the developing cells divide the sample space Y
into c mutually nonoverlapping regions, called lobe regions:

Y = R1 ∪ R2 ∪ ... ∪ Rc, (2)

(where ∪ denotes the union of two spaces). Each region Ri

is represented by a single unit feature vector vi, called the
lobe component. Given an input y, many cells, not only vi,
will respond. The response pattern forms a new population
representation of y.

Suppose that a unit vector (neuron) vi represents a lobe
region Ri. If y belongs to Ri, y can be approximated by vi

as the projection onto vi: y ≈ ŷ = (y · vi)vi. Suppose the
neuron vi minimizes the mean square error E‖y − ŷ‖2 of
this representation when y belongs to Ri.

According to the theory of Principal Component Analysis
(PCA) (e.g., see [4]), we know that the best solution of col-
umn vector vi is the principal component of the conditional
covariance matrix Σy,i, conditioned on y belonging to Ri.
That is vi satisfies λi,1vi = Σy,ivi.

Replacing Σy,i by the estimated sample covariance matrix
of column vector y, we have

λi,1vi ≈
1

n

n
∑

t=1

y(t)y(t)>vi =
1

n

n
∑

t=1

(y(t) · vi)y(t). (3)

We can see that the best lobe component vector vi, scaled by
“energy estimate” eigenvalue λi,1, can be estimated by the
average of the input vector y(t) weighted by the linearized
(without g) response y(t) · vi whenever y(t) belongs to Ri.
This average expression is crucial for the concept of optimal
statistical efficiency discussed below.

E. Optimality

Suppose that there are two estimators Γ1 and Γ2, for a
vector parameter (i.e., synapses or a feature vector) θ =
(θ1, ..., θk), which are based on the same set of observations

S = {x1,x2, ...,xn}. If the expected square error of Γ1 is
smaller than that of Γ2 (i.e., E‖Γ1−θ‖2 < E‖Γ2−θ‖2), the
estimator Γ1 is more statistically efficient than Γ2. Given
the same observations, among all possible estimators, the
optimally efficient estimator has the smallest possible error.
The challenge is how to convert a nonlinear search problem
into an optimal estimation problem using the concept of
statistical efficiency.

For in-place development, each neuron does not have extra
space to store all the training samples y(t). Instead, it uses its
physiological mechanisms to update synapses incrementally.
If the i-th neuron vi(t − 1) at time t − 1 has already been
computed using previous t−1 inputs y(1),y(2), ...,y(t−1),
the neuron can be updated into vi(t) using the current sample
defined from y(t) as:

xt =
y(t) · vi(t− 1)

‖vi(t− 1)‖
y(t). (4)

Then Eq. (3) states that the lobe component vector is esti-
mated by the average:

λi,1vi ≈
1

n

n
∑

t=1

xt. (5)

Statistical estimation theory reveals that for many distri-
butions (e.g., Gaussian and exponential distributions), the
sample mean is the most efficient estimator of the population
mean (see, e.g., Theorem 4.1, p. 429-430 of Lehmann [7]). In
other words, the estimator in Eq. (5) has nearly the minimum
error given the observations.

F. Lobe components for nonstationary processes

The sensory environment of a developing brain is not
stationary. That is the distribution of the environment changes
over time. Therefore, the sensory input process is a non-
stationary process too. We use the amnesic mean technique
below which gradually “forgets” old “observations” (which
use bad xt when t is small) while keeping the estimator
quasi-optimally efficient.

The mean in Eq. (5) is a batch method. For incremental
estimation, we use what is called an amnesic mean [11].

x̄(t) =
t− 1− µ(t)

t
x̄(t−1) +

1 + µ(t)

t
xt (6)

where µ(t) is the amnesic function depending on t. If µ ≡ 0,
the above gives the straight incremental mean. We adopt a
profile of µ(t):

µ(t) =

0 if t ≤ t1,
c(t− t1)/(t2 − t1) if t1 < t ≤ t2,
c + (t− t2)/r if t2 < t,

(7)

in which, e.g., c = 2, r = 10000. As can be seen above,
µ(t) has three intervals. When t is small, straight incremental
average is computed.

G. Single-layer updating algorithm

We model the development (adaptation) of an area of corti-
cal cells (e.g., a cortical column) connected by a common in-
put column vector y by the following Candid Covariance-free
Incremental Lobe Component Analysis (CCI LCA) (Type-5)
algorithm, which incrementally updates c such cells (neurons)
represented by the column vectors v

(t)
1 ,v

(t)
2 , ...,v

(t)
c from in-

put samples y(1),y(2), ... of dimension k without computing
the k×k covariance matrix of y. The length of the estimated
vi, its eigenvalue, is the variance of projections of the vectors
y(t) onto vi. The output of the layer is the response vector
z = (z1, z2, ..., zc). The quasi-optimally efficient, in-place
learning, single layer CCI LCA algorithm z = LCA(y) is as
follows:

1) Sequentially initialize c cells using first c observations:
v

(c)
t = y(t) and set cell-update age n(t) = 1, for t =

1, 2, ..., c.
2) For t = c + 1, c + 2, ..., do

a) If the output is not given, compute output (re-
sponse) for all neurons: For all i with 1 ≤ i ≤ c,
compute response:

zi = gi

(

y(t) · v
(t−1)
i

‖v
(t−1)
i ‖

)

, (8)

where gi is a neuron-specific sigmoidal function.
A simple version of gi is a linear function with
under- and over-saturation points at a distance of
a few standard deviations away from the mean of
the input.

b) Simulating lateral inhibition, decide the winner:
j = argmax1≤i≤c{zi}, using zi as the belong-
ingness of y(t) to Ri.

c) Update only the winner neuron vj using its tem-
porally scheduled plasticity:

v
(t)
j = w1v

(t−1)
j + w2ljy(t),

where the scheduled plasticity is determined by
its two age-dependent weights:

w1 =
n(j)− 1− µ(n(j))

n(j)
, w2 =

1 + µ(n(j))

n(j)
,

with w1+w2 ≡ 1. Update the number of hits (cell
age) n(j) only for the winner: n(j)← n(j) + 1.

d) All other neurons keep their ages and weight
unchanged: For all 1 ≤ i ≤ c, i 6= j, v

(t)
i =

v
(t−1)
i .

The neuron winning mechanism corresponds to the well
known mechanism called lateral inhibition (see, e.g., Kandel
et al. [5] p. 4623). The winner updating rule is a computer
simulation of the Hebbian rule (see, e.g., Kandel et al. [5]
p.1262). Assuming the plasticity scheduling by w1 and w2

are realized by the genetic and physiologic mechanisms of

the cell, this algorithm is in-place. Alternatively, we use “soft
winners” where multiple top (e.g., top-k) winners update.

H. Multiple-layer in-place learning

The following is the multi-layer in-place learning algo-
rithm z(t) = MILN(x(t)). Suppose that the network has l
layers.

MILN Learning: Initialize the time t = 0. Do the
following forever (development), until power is off.

1) Grab the current input frame x(t). Let y0 = x(t).
2) If the current desired output frame is given, set the

output at layer l, yl ← z(t), as given.
3) For j = 1, 2, ..., l, run the LCA algorithm on layer j,

yj = LCA(yj−1), where the layer j is also updated.
4) Produce output z(t) = yl; t← t + 1.

IV. EXPERIMENTAL EXAMPLES

The network is intended to serve as a new engine for
cortical development using natural images as input. However,
to show the effect of the discussed properties more clearly,
we use the MNIST database of handwritten digits available at
http://yann.lecun.com/exdb/mnist/ so that the image of each
weight vector intuitively shows samples that contributed to
it.

An attention selection mechanism, such as that of Zhang
& Weng [12] will be incorporated into this network in our
future study. Without an attention mechanism, we should not
expect that the global match performed by the network will
outperform other methods that perform local analysis (e.g.,
convolution using small templates [6]) given the same set of
training samples. This is the first framework that we know of
for in-place incremental cortical development. It is important
to understand the properties of this network before applying
attention selection mechanisms.

The MNIST data set consists of 70,000 images of the hand-
written digits from 0 to 9, with 60,000 samples for training
and 10,000 for testing. The 250 writers represented in the
training set are disjoint from the 250 writers represented in
the testing set (i.e., writer-disjoint). Each image is composed
of 28×28 = 784 pixel intensity values, with a grey and white
digit over a black background. All images have already been
translation-normalized, so that each digit resides at the center
of the image.

Networks can be constructed with any number of neurons
on any number of layers. In the following experiments,
networks with only two-layers are used. For those with more
layers, learning the weights of the hidden layers is different
than in the traditional multi-layer feed-forward networks with
back-propagation learning and are discussed in [10].

A. Limited cells

In the first experiment, we test global prototyping ca-
pabilities of lobe components when the number of cells
is limited. All the networks have n layer-1 neurons and

10 layer-2 neurons (for 10 classes of digits). During the
supervised training session, we set the layer-2 output vector
in the following way: When a sample of class i is given,
i = 0, 1, ..., 9, the layer-2 output is such that the i-th neuron
gives 1 and all other neurons give zero outputs. Therefore,
lobe components in layer-1 serve as “prototypes” of a class.
We used top-1 response in that only a single winner at each
layer can fire. Thus, the layer-2 neurons determine which
class the firing layer-1 neuron belongs to. We constructed
networks with different numbers of n, to study the effect of
varying number of “prototypes” in layer-1.

To compare with the effect of LCA updating, we also
tested a simpler network call “Pure Initialization,” where
the weights of n layer-1 neurons were initialized by the
sequentially arriving samples as in the LCA algorithm, but
they are not updated any further when later samples arrive.
The training set was pre-arranged so that the number of
neurons representing each class were nearly equal. In the
second network type “updated lobe components,” the layer-
1 lobe-components were further updated as specified by the
LCA algorithm. When n = 60, 000, both approaches will
give the same result, since the number of layer-1 neurons is
the same as the number of training samples. Both layers are
trained at once using a single cycle through the samples.

A test sample can then be classified using the neuron index
with the highest layer-2 response. Performance is based on
the error rate for all 10,000 test samples. Results are summa-
rized in Fig. 2. It can be proved that both types of networks
perform nearest-neighbor match in the inner-product space,
using the lobe components in layer-1 as prototypes. The
plot shows that the larger the number of prototypes, the
smaller the error rate, in general. When n = 60, 000, the
number of training samples is the same as the number of
prototypes, which is excessive for most applications. When
n is reduced, the error rate also increases. However, “updated
lobe components” give smaller errors, which shows that the
initialization followed by updating is more effective than the
pure initialization alone when the number of prototypes is
smaller than the number of training samples. When n is
reduced to 1, 800, about 33 samples per prototype, the error
rate only increased slightly from n = 60, 000.

B. Sparse coding

In this experiment, we study whether it will help to allow
more neurons to fire. We used the same network structure
as the first experiment, but all the lobe components in layer-
1 are updated. In the first network type “top one nonzero
response,” only the top-one winner in layer-1 is allowed to
fire. In the second type called “top three nonzero responses,”
the top-three responses from layer-1 were multiplied by a
factor of 1, 0.66 and 0.33, respectively, and all other layer-
1 neurons give zero response. The error rates for different
numbers of layer-1 neurons are shown in Fig. 3. We know

Fig. 2. The effects of the limited number of layer-1 cells and the
update of lobe components. In “Pure initialization,” every weight
vector in layer-1 is purely initialized by a single training sample
and is not updated.

Fig. 3. The effect of multiple responses versus the neuronal density.

that top-3 responses give more information about the position
of the input in relation with the top-three winning neurons.
However, Fig. 3 showed that multiple responses did not help
when the density of the prototypes is low. This is reasonable
because bringing in far-away prototypes in decision making
may add noise. This situation changed when the number of
prototypes is sufficiently large so that the positions of nearby
prototypes better predict the shape of the class boundaries
indicated by the crossing point in Fig. 3.

C. Topography and invariance

The next experiments focus on topographical cortical self-
organization and its implication to within-class invariance. As
observed in V1 and other cortical areas, nearby neurons have
similar representations. This means nearby neurons represent

Fig. 4. The topographic map of layer-1 neurons for the hand-written
digit 8.

nearby inputs or concepts. We place all layer-1 neurons in a
two-dimensional, square grid, simulating a “cortical sheet.”
The winner neuron that updates for each input will also cause
its nearby neurons within a distance of 2 from the winner to
update as well, with their gain w2 in the algorithm weighted
by their distance to the winner, but w1 + w2 = 1 still holds.
Fig. 4 shows an example with a 10× 10 grid and all of the
training samples were from the class “8.” We can see that
within-class variation of the digit 8 is represented by this
cortical area, sampled by the discrete number of prototypes.
The invariance for such within-class variation is achieved by
the positive weights from all of these neurons to the 8-th
layer-2 neuron.

The above case does not include between-class competition
for resources (neurons). To show the self-organization of re-
source for all 10 classes, Fig. 5(a) shows the layer-1 neurons
in a 40 × 40 grid trained with all training samples. There
are areas which can be seen to correspond to a particular
class, since there is no guarantee that the area of a single
class is connected in the topographic map, which is also the
case in biological networks (see, e.g., [9]). It depends on the
size of neighborhood update, the inputs and degree of input
variations.

Fig. 5(b) shows the learned weights of the layer-2 neuron
corresponding to the digit-1 class. The darker the intensity,
the larger the weight. As shown, invariance is achieved by the
positive weights from the corresponding digit “1” neurons to
the corresponding output neuron. Therefore, the within-class
invariance shown at the output layer can be learned from
multiple regions in the previous layer.

V. CONCLUSIONS

This is mainly a theoretical paper about a multi-layer
network that integrates bottom-up unsupervised learning and
top-down supervised learning. This is the first multi-layer
in-place learning network for general-purpose regression
and classification with a near-optimal within-layer statistical
efficiency. In other words, within each layer all neurons
incrementally maintain a near-optimal representation while
receiving sensory inputs from developmental experience. The

experimental networks showed that those lobe components
can learn the complex shape of the class manifolds in the
layer’s input (inner product) space.

REFERENCES

[1] J. J. Atick and A. N. Redlich. Towards a theory of early visual
processing. Neural Computation, 2:308–320, 1990.

[2] S. E. Fahlman and C. Lebiere. The cascade-correlation learning
architecture. Technical Report CMU-CS-90-100, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, Feb. 1990.

[3] W. S. Hwang and J. Weng. Hierarchical discriminant regression. IEEE
Trans. Pattern Analysis and Machine Intelligence, 22(11):1277–1293,
2000.

[4] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New
York, 1986.

[5] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, editors. Principles of
Neural Science. McGraw-Hill, New York, 4th edition, 2000.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of IEEE,
86(11):2278–2324, 1998.

[7] E. L. Lehmann. Theory of Point Estimation. John Wiley and Sons,
Inc., New York, 1983.

[8] M. I. Posner and M. E. Raichle. Images of Mind. Scientific American
Library, New York, 1994.

[9] X. Wang, M. M. Merzenich, K. Sameshima, and W. M. Jenkins.
Remodeling of hand representation in adult cortex determined by
timing of tactile stimulation. Nature, 378(2):13–14, 1995.

[10] J. Weng, H. Lu, T. Luwang, and X. Xue. In-place learning for
positional and scale invariance. In Proc. IEEE World Congress on
Computational Intelligence, Vancouver, BC, Canada, July 16-21 2006.

[11] J. Weng, Y. Zhang, and W. Hwang. Candid covariance-free incremental
principal component analysis. IEEE Trans. Pattern Analysis and
Machine Intelligence, 25(8):1034–1040, 2003.

[12] N. Zhang and J. Weng. A developing sensory mapping for robots.
In Proc. IEEE 2nd International Conf. on Development and Learning
(ICDL 2002), pages 13–20, MIT, Cambridge, Massachusetts, June 12-
15 2002.

(a)

(b)

Fig. 5. (a) The topographic map of layer-1 neurons. (b) Learned weights
of the layer-2 neuron for the digit “1” class.

